
"Launched April 6, 1984, one of the goals of the STS-41C mission was to repair the damaged free-flying Solar Maximum Mission (SMM) satellite, or Solar Max. The original plan was to make an excursion out to the SMMS and capture it for necessary repairs. Pictured is Mission Specialist George Nelson attempting to grapple the damaged satellite in a capture attempt. This attempted feat was unsuccessful. It was necessary to capture the satellite via the orbiter's Remote Manipulator System (RMS) and secure it into the cargo bay in order to perform the repairs, which included replacing the altitude control system and the coronograph/polarimeter electronics box. The SMM satellite was originally launched into space via the Delta Rocket in February 1980, with the purpose of providing a means of studying solar flares during the most active part of the current sunspot cycle. Dr. Einar Tandberg-Hanssen of Marshall Space Flight Center's Space Sciences Lab was principal investigator for the Ultraviolet Spectrometer and Polarimeter, one of the seven experiments of the Solar Max."
The above is my minor paraphrasing of a NASA caption associated with the widely published image of the capture attempt (linked to below). Note the substantially different orientation of Solar Max in this photograph in comparison to that image, which was taken earlier during the capture attempt. Assuming that a constant relative position & distance was maintained between Solar Max & the orbiter during this time, the substantially different orientation of the satellite must be due to the motion imparted by Nelson’s repeated unsuccessful grappling attempts.
Additional pointless musings: As Nelson is nowhere near the grapple fixture, I’m wondering if this was after he had ceased further attempts at securing the satellite. Or possibly, shortly before/after he grabbed one of the solar arrays in a last ditch attempt to dampen its rotation. Finally, note also that the high-gain antenna appears to have been retracted, into a possible stowed position.
Interesting reading:
“Precisely on time, after a 10-minute solo flight, Nelson arrived in Solar Max’s vicinity and used the MMU’s thrusters to gently match its rotation. Unfortunately, when he moved in to mate his TPAD with the satellite, it did not clamp properly into place. “We didn’t know what was wrong,” explained Hart, “but, being mechanical engineers, we said ‘If a small hammer doesn’t work, use a bigger hammer!’ So Pinky went in twice as fast the next time and he hit again and bounced right off again.” A third try, which imparted yet more force, also failed. Had the TPAD been affected by the cold of orbital darkness? Its temperature after removal from the payload bay storage locker had not been maintained, but pre-flight tests and actual flight experience on Mission 41B determined that it was capable of withstanding at least a few hours in the frigid darkness.
Low temperatures did not seem to be a contributory factor. Furthermore, when Nelson pushed the TPAD against Solar Max, its trigger activated and released a pair of jaws in an attempt to grab onto its quarry. This ruled out a malfunction in the docking hardware. However, as the first EVA continued, the crew saw another problem brewing: Nelson’s efforts had jostled Solar Max out of its previously slow spin and Crippen asked him to grab a solar panel to steady it. The gyroscopic effect of this action worsened matters, and, with his MMU’s nitrogen supply running low, Nelson returned to Challenger. Instead of revolving gently, like a top, Solar Max was now tumbling unpredictably around all three axes.
Four tries by Hart to grapple it with the RMS proved fruitless, and Crippen opted to withdraw to a distance of about 100 miles (160 km) until a new strategy could be thrashed out. “The grappling pin I had to grab was underneath one of the large solar panels, so I could only get [the arm] there under certain conditions,” recalled Hart, “and it was very hard to predict how it was doing. I got close to it and I was maybe a foot away from getting it, but I’d reach some limit on the elbow or the wrist. I couldn’t go far enough or fast enough to get it. It may be a good thing, because the satellite was tumbling so much that if I had gotten it, it may have actually broken the arm! Crippen, rightfully, said ‘King’s X. Let’s go back.’ We got the Shuttle back in position in front of the satellite and then we stabilized everything. We had fuel left, but not enough to do what we were doing anymore.”
Privately, the astronauts were convinced that they had blown it and that the mission was a failure. “I could see myself spending the next six months in Washington,” Crippen told the NASA oral historian, “explaining why we didn’t grab that satellite!
…It also became clear during the second spacewalk precisely why Nelson’s attempts to capture Solar Max had been thrice frustrated: a small grommet, just 0.8 inches (20 mm) high and 0.25 inches (6.4 mm) thick, had obstructed the full penetration of the TPAD onto the satellite’s trunnion pin. The grommet, which was installed near the pin, helped to hold part of Solar Max’s gold-colored thermal insulation blanket in place.
“What no-one noticed,” explained Hart, “is that one of the blankets had been put on with a little fiberglass standoff that the grommets would fit over. The engineering drawings didn’t specify where those standoffs could be, so when they assembled the satellite, the technicians just put one wherever the grommet was. They glued it onto the metal frame, then stuck the blanket on. That was the correct thing to do, because no-one envisioned using that pin for anything.” A use for the pin did emerge, however, a year after Solar Max’s launch, when the option of a shuttle repair was first explored in depth, “but when they were designing the TPAD,” Hart continued, “no-one noticed that there was a grommet there. When Pinky went to dock, it interfered with the docking adaptor.”
It turned out that, if Nelson had made his approach to the pin within a very narrow pitch angle “corridor,” he might have succeeded and captured Solar Max. However, during his second EVA, he took measurements of where the grommet was and the obstruction it posed, and found that it stuck out 0.6 inches (1.5 cm) too far. The TPAD, clearly, would not work. Either way, Challenger’s on-board fuel was now too low to support a rescue if Nelson’s MMU happened to fail. Instead, Crippen would fly close enough to Solar Max for Hart to grapple it with the mechanical arm.”
From/At:
www.americaspace.com/2014/04/05/fixing-solar-max-30-years...
www.americaspace.com/2014/04/06/fixing-solar-max-30-years...
Credit: AmericaSpace.com website